Especial: Sirius, o novo síncrotron brasileiro de última geração

SBPMat em 31/03/2016

Link: http://sbpmat.org.br/especial-sirius-o-novo-sincrotron-brasileiro-de-ultima-geracao/

Antes da virada desta década, o Laboratório Nacional de Luz Síncrotron (LNLS), localizado no município de Campinas (SP), deve começar a receber pesquisadores do Brasil e do resto do mundo para utilizarem o Sirius, o síncrotron brasileiro de quarta geração que substituirá ou complementará o UVX – atual síncrotron brasileiro, de segunda geração, que está em funcionamento desde 1997 e é o único síncrotron da América Latina.

Muito apreciados pela comunidade científica de Materiais, e de muitas outras áreas, os síncrotrons são as melhores fontes de feixes de raios X e de luz ultravioleta, dois tipos de radiação de grande utilidade no estudo da matéria. O processo para obter a radiação começa quando elétrons são acelerados até atingirem uma velocidade próxima à da luz e submetidos a desvios na sua trajetória. Quando desviados, os elétrons perdem parte de sua energia na forma de luz síncrotron, a qual é filtrada por monocromadores, encarregados de liberar a passagem de radiação apenas no comprimento de onda desejado. Assim, feixes de raios X ou de luz ultravioleta são levados até as estações experimentais ou linhas de luz, em volta do acelerador, que têm diversos instrumentos científicos. Ali ficam os usuários dos síncrotrons, aproveitando a radiação para analisar sua interação com a matéria por meio dos instrumentos científicos e, dessa maneira, obter informações sobre a estrutura e propriedades dos materiais em escala micro e nanométrica.

Voltando ao Sirius, como sugere seu nome, que remete à estrela mais brilhante do céu noturno, ele será capaz de gerar feixes de luz de altíssimo brilho (até um bilhão de vezes mais alto do que o brilho do UVX) – uma característica muito importante para poder fazer mais e melhores experimentos.

Essa radiação de altíssimo brilho, em combinação com avançados instrumentos científicos e poderosos computadores para processar rapidamente uma grande quantidade de dados, permitirá a realização de uma diversidade de experimentos que devem gerar resultados científicos e tecnológicos em segmentos como Agricultura, Biologia, Geologia, Energia e Saúde, além, é claro, na transversal área de Materiais.

Localização das fontes de luz síncrotron em construção e em operação no mundo. Crédito: LNLS-CNPEM.

Para isso, cerca de 300 pessoas estão trabalhando no projeto e construção do Sirius, uma obra de grande dimensão e complexidade que envolve vários desafios. Um deles é o desenvolvimento da fonte de luz síncrotron. De fato, o Sirius será uma das primeiras fontes de quarta geração do mundo (existe apenas mais uma, em construção, na Suécia, e nenhuma operando). Desafios também estão presentes na construção do prédio, que deve garantir a quase absoluta ausência de vibrações, por menores que sejam. Os desafios continuam, por exemplo, no desenvolvimento de um sistema de monitoramento, diagnóstico e correção da estabilidade da trajetória do sensível feixe de elétrons.

Este grande empreendimento brasileiro, cujo valor é estimado em 1,3 bilhões de reais, está sendo realizado pelo LNLS, que desenvolveu o UVX e cuida da sua operação, manutenção e atualização há 19 anos. A direção geral da equipe está sob a responsabilidade do atual diretor do LNLS, Antonio José Roque da Silva. Professor titular da Universidade de São Paulo (USP), Roque da Silva tem graduação e mestrado em Física pela Unicamp, e doutorado (PhD), também em Física, pela University of California at Berkeley. É autor de mais de 120 artigos publicados em periódicos científicos indexados, muitos deles referentes a estudos sobre materiais. Suas publicações contam com mais de 4.400 citações, segundo o Google Scholar.

Veja a entrevista do Boletim da SBPMat com Roque da Silva sobre as características técnicas do Sirius, as possibilidades que oferecerá à comunidade de Materiais, o andamento do projeto e o futuro do UVX, entre outros assuntos.

Boletim da SBPMat: – O Sirius será uma fonte de luz síncrotron de alto brilho. Qual é a importância do brilho para as pesquisas em Ciência e Tecnologia de Materiais?

Antonio José Roque da Silva: – Para uma dada frequência da radiação, o seu brilho é diretamente proporcional ao fluxo (número de fótons por unidade de tempo) e inversamente proporcional ao produto (tamanho do feixe x divergência angular do feixe). Esse último produto é a emitância do feixe. Portanto, quanto menor a emitância, maior o brilho.

Um alto brilho influencia as análises de materiais de diferentes formas:

a.  Quanto maior o brilho da luz produzida pela fonte de luz síncrotron, maior é o número de amostras que podem ser analisadas num mesmo espaço de tempo; isso permite, inclusive, fazer experimentos com resolução temporal, em que se acompanha a evolução de reações ou processos, por exemplo, em função do tempo.

b.  Quanto maior o brilho, melhor é a relação sinal-ruído de diversas técnicas de análise.

c.  A menor emitância, e portanto maior brilho, permite que menores escalas espaciais sejam sondadas pelas técnicas de análise. Isso abre oportunidades para estudos com feixes de poucos nanometros, importantes para áreas como nanotecnologia, dentre outras.

As primeiras 13 linhas de luz que serão instaladas no Sirius. Dados fornecidos pelo LNLS-CNPEM.

d. Um maior brilho permite que novas técnicas surjam ou sejam exploradas mais efetivamente. Isso ocorre, por exemplo, com a técnica de Coherent Diffraction Imaging. As técnicas de imagem, tomografia e microscopia irão ser bastante beneficiadas pelo maior brilho.

Boletim da SBPMat: – Quais são as limitações do síncrotron UVX que serão superadas pelo Sirius? Por exemplo, nas estações experimentais do Sirius haverá técnicas de caracterização de materiais que não podem ser instaladas no UVX?

Antonio José Roque da Silva: – A primeira diferença entre as duas máquinas é a faixa de energia em que trabalham. Os elétrons no anel de armazenamento do Sirius serão acelerados até a energia de 3 GeV, mais que o dobro da energia do UVX. Isso faz com que raios X de maior energia sejam produzidos e permite que materiais como aço, concreto e rochas sejam estudados mais profundamente devido à penetração dos raios X de até alguns centímetros, contra alguns micrômetros do UVX.
Também pela diferença de energia, o número de elementos químicos que podem ser estudados por espectroscopia de absorção de raios X moles também é diferente. No UVX pouco menos da metade dos elementos químicos pode ser estudada, enquanto no Sirius quase todos os elementos da Tabela Periódica poderão ser estudados.

O baixo brilho e alta emitância (ver acima) do UVX limitam sobremaneira as técnicas mais modernas de síncrotron disponíveis para a comunidade do país. Nanotomografia, imagem por difração coerente, nanomicroscopia de fluorescência, análise de nanocristais, estudos de materiais em condições extremas (altas pressões e altas temperaturas), espalhamento inelástico, acompanhamento temporal de diversos processos, acompanhado de resolução espacial nanométrica e resolução química (importante, por exemplo, para processos catalíticos), dentre várias outras técnicas, não são possíveis de serem realizadas no UVX, ou são realizadas com grandes limitações, e todas poderão ser executadas no Sirius em alto padrão.

Boletim da SBPMat: – O que acontecerá com o UVX? Será desmontado?

Antonio José Roque da Silva: – É importante salientar que tudo o que o UVX faz hoje poderá ser feito muito melhor no Sirius. Além do enorme número de novos experimentos que são impossíveis de serem realizados pelo UVX, como citado acima. É uma preocupação do LNLS que durante o período de comissionamento das linhas de luz do Sirius, o UVX seja mantido operacional, garantindo que a comunidade não sofra nenhuma descontinuidade. Entretanto, após o Sirius ficar totalmente operacional, não se sabe ainda se a máquina atual será mantida ou desativada. Sabemos que o instrumental científico hoje disponível em algumas estações experimentais do UVX será transferido para o Sirius. Além disso, é necessário avaliar os custos e a viabilidade da manutenção e operação simultânea de duas fontes de luz síncrotron, bem como do pessoal necessário (engenheiros, técnicos, pesquisadores etc.) para operação de ambas as fontes. É necessário avaliar, ainda, qual será a demanda dos usuários pelas estações experimentais do UVX, uma vez que o Sirius esteja em operação.

Boletim da SBPMat: – A competência de profissionais (cientistas, engenheiros, técnicos) e empresas do Brasil desenvolvida durante a construção do UVX é/será aproveitada no Sirius? Se sim, de que maneira?

Antonio José Roque da Silva: – O projeto Sirius não seria possível sem a competência dos profissionais formados pelo LNLS ao longo dos anos, particularmente durante a construção do UVX. Esse corpo profissional (cientistas, engenheiros, técnicos) de alta capacidade e especialização, formado ao longo dos últimos 30 anos, é essencial para o sucesso do Sirius. O amálgama de profissionais experientes, originários da construção do UVX, com jovens é estratégia central do LNLS. Para o Sirius e para o futuro do laboratório. Do ponto de vista técnico, o conhecimento acumulado pelos nossos engenheiros e técnicos na construção e operação do UVX é que permite projetar um síncrotron como o Sirius, no estado da arte. Essa experiência será crucial também para a operação do novo síncrotron.  O mesmo vale para os cientistas. O envolvimento com a construção e operação das linhas de luz e estações experimentais do UVX é fator importantíssimo para os projetos das sofisticadas linhas de luz do Sirius. O contínuo envolvimento desses pesquisadores no treinamento de novos usuários, o que é feito regularmente pelo LNLS, é também algo fundamental, e que remonta desde o início da construção do UVX. Vale mencionar que todo esse conhecimento adquirido ao longo de décadas também depende de forte interação com a comunidade internacional de síncrotrons. O LNLS está fortemente inserido nessa comunidade.

Do ponto de vista de empresas, o número envolvido na construção do UVX foi pequeno. O UVX foi não somente projetado, mas também construído em grande parte dentro do LNLS. Entretanto, algumas empresas, como a Termomecânica, que foram parceiros importantes do UVX, também estão participando da construção do Sirius. Mas o LNLS estruturou programas específicos, com sucesso, para envolver empresas brasileiras no desenvolvimento e construção de diversos componentes para o Sirius. Programas esses em parceria com agências de fomento como FAPESP e FINEP. Esse desenvolvimento de parcerias com empresas brasileiras será importante também para o futuro. Por último, o conhecimento desenvolvido pelas empresas brasileiras que colaboram (e que ainda irão colaborar) com o projeto é de uma relevância que extrapola os limites do próprio projeto. Este é o motivo pelo qual consideramos o Sirius um projeto “estruturante”, cujos desenvolvimentos podem se refletir em novas tecnologias, em novos produtos e processos que trarão benefícios para a cadeia produtiva brasileira de alta tecnologia.

Boletim da SBPMat: – Por ser uma obra de engenharia muito complexa, de alto padrão de exigência e pioneira (não tem outro síncrotron de 4ª geração pronto no mundo), a construção do Sirius apresenta desafios sem precedentes, não é mesmo? Enquanto diretor do projeto, com que você conta para resolver esses desafios?

Antonio José Roque da Silva: – Contamos principalmente com a experiência, conhecimento e arrojo da equipe de cientistas, engenheiros e técnicos do LNLS. A coragem dessa equipe para enfrentar desafios é um dos maiores legados que remontam da construção do UVX. A bela história da construção do UVX já foi abordada em outros boletins da SBPMAT [Nota do boletim: veja aqui a primeira e segunda parte dessa história). A cultura do “yes, we can do”, que vem desde o início do LNLS, é fundamental para vencermos os desafios. Uma das estratégias é aumentar o quadro de profissionais, fundamental dadas as dimensões do Sirius, mesclando jovens com os profissionais mais experientes, garantindo a manutenção da cultura e conhecimento existentes na casa. Além dessa experiência, competência e coragem, a constante interação com outros laboratórios é fundamental. Investimos fortemente nessa área, tanto enviando profissionais do LNLS para o exterior, quanto trazendo especialistas do exterior para visitarem o laboratório. Nesse aspecto, é também importante o processo de avaliação das nossas soluções por renomados especialistas internacionais. Isso é feito através de comitês de avaliação que vêm de forma regular ao LNLS, e através da apresentação dos nossos resultados em conferências e workshops especializados. É importante, também, o investimento em infra-estrutura de ponta, tanto para fabricação quanto para metrologia. Finalmente, uma parte relevante é a gestão e coordenação das atividades e da equipe, garantindo a execução eficiente dos processos necessários.

Boletim da SBPMat: – Comente a participação de empresas e instituições externas ao CNPEM, nacionais e internacionais, no desenvolvimento do Sirius.

Antonio José Roque da Silva: – O projeto Sirius tem como um dos seus objetivos estimular o desenvolvimento da indústria brasileira, por meio da indução de demandas de desenvolvimentos tecnológicos, serviços, matérias-primas, processos e equipamentos. A meta é aplicar entre 65% a 70% dos recursos financeiros do projeto dentro do país. Vale lembrar que o projeto, em si, é 100% nacional.
Dentre parcerias já estabelecidas, cita-se, como exemplo, a realizada com a empresa Termomecânica São Paulo, que desenvolveu o processo para fabricação da matéria prima para as câmaras de vácuo do anel de armazenamento, bem como dos fios de cobre ocos para os eletroímãs, que permitem circulação de água para refrigeração (desenvolvimento este que remonta ao UVX). Outro exemplo é a empresa WEG Indústrias (SC), tradicional fabricante de motores elétricos, que irá fabricar os mais de 1.350 eletroímãs do Sirius, projetados pela equipe técnica do LNLS. Essa é uma parceria excepcional, ligada a sofisticados desenvolvimentos de processos produtivos e que tem sido extremamente bem sucedida.
Existem também exemplos de parcerias com empresas de menor porte, como a FCA Brasil (Campinas, SP), para a fabricação das câmaras de vácuo do Booster, e com a empresa EXA-M Instrumentação do Nordeste (BA), para o desenvolvimento e fabricação dos dispositivos para aquecimento das câmaras de vácuo do anel de armazenamento, e com a Engecer de São Carlos para fabricação de câmaras especiais de vácuo feitas de cerâmica.

Para ampliar a participação de empresas nacionais no projeto Sirius, outras ações sistemáticas foram realizadas. Negociações junto Finep e FAPESP culminaram no lançamento, em 2014, da primeira chamada pública para seleção de empresas paulistas para o desenvolvimento de 20 das demandas tecnológicas do projeto Sirius, com recursos da ordem de R$ 40 milhões. Esses recursos foram disponibilizados no âmbito do Programa PIPE/PAPPE Subvenção Econômica, de modo que cada proposta pudesse solicitar até R$ 1,5 milhão para seu desenvolvimento. Foram selecionadas oito empresas que desenvolverão 13 projetos de pesquisa para a realização dos desafios propostos no edital.
Em 2015 uma segunda chamada pública de propostas foi lançada para o desenvolvimento de 13 novos desafios tecnológicos, com recursos da ordem de R$ 20 milhões no âmbito do mesmo programa. O prazo final para envio das propostas pelas empresas foi encerrado em fevereiro, e atualmente estão em fase de análise pela FAPESP. A expectativa para o segundo semestre de 2016 é que se tenha pelo menos outras treze empresas aprovadas para o desenvolvimento dos desafios da segunda chamada FAPESP/Finep de apoio ao projeto Sirius.

Do ponto de vista internacional, como já mencionado, a constante interação com vários laboratórios tem sido fundamental ao projeto. Um movimento interessante é que hoje, como estamos na fronteira e com várias soluções inovadoras, há naturalmente um interesse de grupos internacionais em interagirem com o LNLS. Ou seja, o Sirius é naturalmente um enorme vetor de internacionalização.

Boletim da SBPMat: – Cite quais são as fontes de financiamento do projeto.

Antonio José Roque da Silva: – O projeto é majoritariamente financiado pelo Governo Federal, através do Ministério da Ciência, Tecnologia e Inovação, MCTI. Inclusive, é importante salientar que o projeto Sirius recentemente foi incluído no PAC (Programa de Aceleração do Crescimento), estando na lista dos primeiros projetos do MCTI a fazerem parte do Programa.

Outros recursos importantes foram fornecidos pelo Governo do Estado de São Paulo. Por exemplo, o terreno de 150 mil metros quadrados onde será instalado o Sirius foi adquirido pelo Governo Estadual e cedido ao CNPEM.

Além disso, a FAPESP tem sido importante parceira nos programas de interação com empresas e no apoio a eventos e na aquisição de instrumental científico que será instalado nas estações experimentais (linhas de luz) do Sirius.

Boletim da SBPMat: – Em que estágio o projeto se encontra neste momento? Qual é, atualmente, a previsão de inauguração da fonte de luz e das primeiras estações experimentais?

Antonio José Roque da Silva: – As obras civis do edifício que abrigará o Sirius estão cerca de 20% concluídas. Já foi construída parte da superestrutura da edificação principal e parte da estrutura metálica da cobertura da edificação principal. Um marco importante é a liberação do túnel para início da montagem dos aceleradores ao final de 2017.

Diversos componentes do acelerador estão em fase de produção. Todos os quadrupolos e corretoras do booster já foram fabricados (pela WEG) e já foram entregues. Na semana passada foi entregue o lote-piloto do sextupolo, e a fabricação dos sextupolos será iniciada em duas semanas. Os dipolos do booster terão seus protótipos entregues até o fim do mês de março, e sua produção deve ser iniciada no começo de maio. O acelerador linear, Linac já está pronto e passando por testes no Instituto de Física de Xangai. Além disso, outros componentes terminaram a fase de desenvolvimento e estão aguardando a liberação do início da produção, como é o caso das câmaras de vácuo do booster e parte das câmaras de vácuo do anel de armazenamento. As cavidades de RF do booster já foram encomendadas, e as cavidades de RF do anel de armazenamento estão prestes a serem encomendadas. Vários outros subsistemas estão em fase final de prototipagem ou início de produção.

No que se refere às estações experimentais (linhas de luz), seus projetos estão entrando na fase de detalhamento técnico e construção e/ou aquisição de componentes. Os projetos das linhas Ipê, Carnaúba, Ema e Cateretê estão entrando agora em uma fase de detalhamento de componentes das estações experimentais, desenhos técnicos e construção/encomenda de componentes como onduladores e espelhos, que tem tempo de entrega de até dois anos e meio. Praticamente todos os protótipos importantes das linhas de luz estarão concluídos até o final de 2016. De maneira geral, o cronograma do Sirius está dentro do previsto, com previsão de primeiro feixe e início da fase de comissionamento em 2018, para que em 2019 a máquina possa receber os primeiros pesquisadores.

Boletim da SBPMat: – Deseja acrescentar algum comentário ou informação?

Antonio José Roque da Silva: – É importante salientar que o Sirius é uma decorrência da evolução tanto da capacidade interna do laboratório quanto do amadurecimento da comunidade científica do Brasil. O conceito de Laboratório Nacional Aberto, que no caso do LNLS visa prover um equipamento extremamente sofisticado e único para a comunidade de CT&I, está no cerne da cultura do laboratório. O seu funcionamento em alta performance exige investimento constante na formação de recursos humanos altamente especializados (cientistas, engenheiros, técnicos), na manutenção de equipamentos e infraestrutura de ponta (aceleradores, linhas de luz, estações experimentais, grupos de apoio, metrologia, técnicas de fabricação, etc.), treinamento de usuários, desenvolvimento de novas tecnologias, comunicação e gestão de excelência. O projeto síncrotron do Brasil, desde o UVX até o Sirius, é algo que todos os brasileiros podem e devem se orgulhar, tendo saído da “estaca zero” e em trinta anos coloca o Brasil no estado da arte, com enorme impacto na formação de recursos humanos, em ciência de alto nível, em inovação, no desenvolvimento de alta tecnologia e na internacionalização.

Share on FacebookTweet about this on TwitterShare on Google+Email this to someone